盐源苹果,欢迎助农支农,收获阳光自然果的您!

5熊猫网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

开启左侧
查看: 32|回复: 0
 豚鹿 发表于: 2022-4-30 07:18:01|显示全部楼层|阅读模式

[2022年] 中国科学家再次实现二氧化碳“变废为宝”:还原合成葡萄糖和油脂

 [复制链接]
源自:新浪科技综合
b03f-b3dd502e5ba80eeea82dbdcdf782b7e0.jpg
  体外二氧化碳人工合成高能长链食品分子示意图。 研究团队 供图
  中新网北京4月28日电(记者:孙自法)二氧化碳除了可以“变”淀粉,还能“变”其他东西吗?中国科学家最新给出的答案是“能”──可以还原合成葡萄糖和油脂。
  继在国际上首次实现二氧化碳到淀粉的从头合成之后,中国科学家团队再次实现二氧化碳“变废为宝”,他们通过电催化结合生物合成的方式,成功将二氧化碳高效还原合成高浓度乙酸,进一步利用微生物可以合成葡萄糖和油脂。
  这一重磅科研成果由电子科技大学夏川课题组、中国科学院深圳先进技术研究院于涛课题组和中国科学技术大学曾杰课题组共同完成,北京时间4月28日夜间,研究论文在国际专业学术期刊《自然-催化》以封面文章形式发表。
bdbe-37da733aba384b9aee92908eae7e1bb3.jpg
  晶界铜催化CO还原合成乙酸。 研究团队 供图
7376-c875085ce2a0e18c76cee3fd4b833e2f.jpg
  通过电化学耦合生物发酵实现将二氧化碳和水转化为长链产品的示意图。 研究团队 供图

温和条件下工业废气变“食醋”
  在本次研究中,二氧化碳究竟是如何变成葡萄糖和油脂的呢?
  曾杰科普介绍说,首先,需要把二氧化碳转化为可供微生物利用的原料,方便微生物发酵。清洁、高效的电催化技术可以在常温常压条件下工作,是实现这个过程的理想选择,他们团队就此已发展很多成熟的电催化剂体系。
  至于要转化为哪种“原料”,研究人员将目光瞄准了乙酸。因为它不仅是食醋的主要成分,也是一种优秀的生物合成碳源,可以转化为葡萄糖等其他生物物质。
  “二氧化碳直接电解可以得到乙酸,但效率不高,所以我们采取‘两步走’策略──先高效得到一氧化碳,再从一氧化碳到乙酸。”曾杰说。
  夏川指出,常规电催化装置生产出的乙酸混合着很多电解质盐,无法直接用于生物发酵。所以,为了“喂饱”微生物,不仅要提升转化效率,保证“食物”的数量,还要得到不含电解质盐的纯乙酸,保证“食物”的质量。
  研究团队利用新型固态电解质反应装置,使用固态电解质代替原本的电解质盐溶液,直接得到了无需进一步分离的纯乙酸水溶液。利用该装置,能在稳定电流密度内,超140小时连续制备纯度达97%的乙酸水溶液。
60c1-206a705426ff002d0dd65707cf736210.jpg
  以乙酸盐及乙酸为碳源合成葡萄糖及脂肪酸。 研究团队 供图
aa5c-b18d35b96bab11aec0028badef13f3cf.jpg
  酿酒酵母菌株工程改造。 研究团队 供图

微生物“吃醋”产葡萄糖
  于涛说,得到乙酸后,研究团队尝试利用酿酒酵母这一微生物来合成葡萄糖。这个过程,就像是微生物在“吃醋”,酿酒酵母通过不断地“吃醋”来合成葡萄糖,但在这个过程中,酿酒酵母本身也会代谢掉一部分葡萄糖,所以产量并不高。
  对此,研究团队通过敲除酿酒酵母中代谢葡萄糖的三个关键酶元件,废除了酿酒酵母代谢葡萄糖的能力。敲除之后,实验中的工程酵母菌株在摇瓶发酵的条件下,合成的葡萄糖产量达到1.7克每升。
  为进一步提升合成的葡萄糖产量,不仅要废除酿酒酵母的能力,还要加强它本身积累葡萄糖的能力。于是,研究人员又敲除了两个疑似具备代谢葡萄糖能力的酶元件,同时插入来自泛菌属和大肠杆菌的葡萄糖磷酸酶元件。
  于涛表示,这两种酶可以“另辟蹊径”,将酵母体内其他通路中的磷酸分子转化为葡萄糖,增加了酵母菌积累葡萄糖的能力。经过改造后的工程酵母菌株的葡萄糖产量达到2.2克每升,产量提高30%。
b076-ab3076e409513dcfbf828c60ce7dbb7f.jpg
  改造后用于制备葡萄糖的酵母菌株发酵液(棕色溶液),及制备的葡萄糖(白色溶液)。 研究团队 供图
7a3f-b0cbd6ffe774ef1a10da7cc9873109c8.jpg
  固态电解质反应器。 研究团队 供图
  新型催化方式助力高附加值化合物生产
  近年来,随着新能源发电的迅速崛起,电力成本下降,二氧化碳电还原技术已经具备与依赖化石能源的传统化工工艺竞争的潜力。因此,高效的二氧化碳电还原制备高附加值化学品和燃料的工艺被学界认为是建设未来“零碳排放”物质转化的重要研究方向之一。
  夏川表示,为了规避二氧化碳电还原的产物局限性,可考虑将二氧化碳电还原过程与生物过程相耦合,以电催化产物作为电子载体,供微生物后续发酵合成长碳链的化学产品用于生产和生活。
  微生物作为活细胞工厂,其优点是产物多样性很高,能够合成许多无法通过人工生产或人工生产效率很低的化合物,是非常丰富的“物质合成工具箱”。
  曾杰认为,通过电催化结合生物合成的新型催化方式,可以有效提高碳的附加值。研究团队后续将进一步研究电催化与生物发酵这两个平台的同配性和兼容性。未来,如果要合成淀粉、制造色素、生产药物等,只需保持电催化设施不改变,更换发酵使用的微生物就能实现。
886f-c473a3c88917bc654bb6ea2f65713bf7.jpg
  研究团队通过固态电解质反应器制备的乙酸钠粉末。 研究团队 供图
bc2b-62455a878572c04b09d3a608c0eba6cc.jpg
  研究团队通过固态电解质反应器制备的乙酸水溶液。 研究团队 供图

为人工半人工合成“粮食”提供新技术
  中国科学院院士、中国催化专业委员会主任李灿研究员评价说,这项最新研究工作耦合人工电催化与生物酶催化过程,发展了一条由水和二氧化碳到含能化学小分子乙酸,后经工程改造的酵母微生物催化合成葡萄糖和游离的脂肪酸等高附加值产物的新途径,为人工和半人工合成“粮食”提供了新的技术。
  中国科学院院士、上海交通大学微生物代谢国家重点实验室主任邓子新认为,该研究工作开辟了电化学结合活细胞催化制备葡萄糖等粮食产物的新策略,为进一步发展基于电力驱动的新型农业与生物制造业提供了新范例,是二氧化碳利用方面的重要发展方向。 ●
『 5熊猫网 』提醒,在使用本论坛之前您必须仔细阅读并同意下列条款:
  1. 遵守《全国人大常委会关于维护互联网安全的决定》及中华人民共和国其他各项有关法律法规,并遵守您在会员注册时已同意的《『 5熊猫网 』管理办法》;
  2. 严禁发表危害国家安全、破坏民族团结、破坏国家宗教政策、破坏社会稳定、侮辱、诽谤、教唆、淫秽等内容;
  3. 本帖子由 豚鹿 发表,享有版权和著作权(转帖除外),如需转载或引用本帖子中的图片和文字等内容时,必须事前征得 豚鹿 的书面同意;
  4. 本帖子由 豚鹿 发表,仅代表用户本人所为和观点,与『 5熊猫网 』的立场无关,豚鹿 承担一切因您的行为而直接或间接导致的民事或刑事法律责任。
  5. 本帖子由 豚鹿 发表,帖子内容(可能)转载自其它媒体,但并不代表『 5熊猫网 』赞同其观点和对其真实性负责。
  6. 本帖子由 豚鹿 发表,如违规、或侵犯到任何版权问题,请立即举报,本论坛将及时删除并致歉。
  7. 『 5熊猫网 』管理员和版主有权不事先通知发帖者而删除其所发的帖子。
您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

© 2002-2022, 蜀ICP备12031014号, Powered by 5Panda
GMT+8, 2022-12-4 12:58, Processed in 0.109201 second(s), 10 queries, Gzip On, MemCache On
快速回复 返回顶部 返回列表